Richard Feynman: Life, the universe and everything


By Christopher Riley

In these days of frivolous entertainments and frayed attention spans, the people who become famous are not necessarily the brightest stars. One of the biggest hits on YouTube, after all, is a video of a French bulldog who can’t roll over. But in amongst all the skateboarding cats and laughing babies, a new animated video, featuring the words of a dead theoretical physicist, has gone viral. In the film, created from an original documentary made for the BBC back in the early Eighties, the late Nobel Prize-winning professor, Richard Feynman, can be heard extolling the wonders of science contained within a simple flower.

There is “beauty”, he says, not only in the flower’s appearance but also in an appreciation of its inner workings, and how it has evolved the right colours to attract insects to pollinate it. Those observations, he continues, raise further questions about the insects themselves and their perception of the world. “The science,” he concludes, “only adds to the excitement and mystery and awe of the flower.” This interview was first recorded by the BBC producer Christopher Sykes, back in 1981 for an episode of Horizon called “The Pleasure of Finding Things Out”. When it was broadcast the following year the programme was a surprise hit, with the audience beguiled by the silver-haired professor chatting to them about his life and his philosophy of science.

Now, thanks to the web, Richard Feynman’s unique talents – not just as a brilliant physicist, but as an inspiring communicator – are being rediscovered by a whole new audience. As well as the flower video, which, to date, has been watched nearly a quarter of a million times, YouTube is full of other clips paying homage to Feynman’s ground-breaking theories, pithy quips and eventful personal life.

The work he did in his late twenties at Cornell University, in New York state, put the finishing touches to a theory which remains the most successful law of nature yet discovered. But, as I found while making a new documentary about him for the BBC, his curiosity knew no bounds, and his passion for explaining his scientific view of the world was highly contagious. Getting to glimpse his genius through those who loved him, lived and worked with him, I grew to regret never having met him; to share first-hand what so many others described as their “time with Feynman”.

Richard Phillips Feynman was born in Far Rockaway — a suburb of New York – in May 1918, but his path in life was forged even before this. “If he’s a boy I want him to be a scientist,” said his father, Melville, to his pregnant wife. By the time he was 10, Feynman had his own laboratory at home and, a few years later, he was employing his sister Joan as an assistant at a salary of four cents a week. By 15, he’d taught himself trigonometry, advanced algebra, analytic geometry and calculus, and in his last year of high school won the New York University Math Championship, shocking the judges not only by his score, but by how much higher it was than those of his competitors.

He graduated from the Massachusetts Institute of Technology in 1939 and obtained perfect marks in maths and physics exams for the graduate school at Princeton University — an unprecedented feat. “At 23 there was no physicist on Earth who could match his exuberant command over the native materials of theoretical science,” writes his biographer James Gleick.

Such talents led to him being recruited to the Manhattan Project in the early Forties. Together with some of the greatest minds in physics in the 20th century, Feynman was put to work to help build an atom bomb to use against the Germans before they built one to use against the Allies. Security at the top secret Los Alamos labs was at the highest level. But for Feynman — a born iconoclast – such control was there to be challenged. When not doing physics calculations he spent his time picking locks and cracking safes to draw attention to shortcomings in the security systems.

“Anything that’s secret I try and undo,” he explained years later. Feynman saw the locks in the same way as he saw physics: just another puzzle to solve. He garnered such a reputation, in fact, that others at the lab would come to him when a colleague was out of town and they needed a document from his safe.

Between the safe cracking and the physics calculations, the pace of life at Los Alamos was relentless. But for Feynman these activities were a welcome distraction from a darker life. His wife, Arline, who was confined to her bed in a sanatorium nearby, was slowly dying of TB.

When she died in the summer of 1945, Feynman was bereft. This misery was compounded, a few weeks later, when the first operational atom bomb was dropped on Japan, killing more than 80,000 people. His original reason for applying his physics to the war effort had been to stop the Germans. But its use on the Japanese left Feynman shocked. For the first time in his life he started to question the value of science and, convinced the world was about to end in a nuclear holocaust, his focus drifted.

He became something of a womaniser, dating undergraduates and hanging out with show girls and prostitutes in Las Vegas. In a celebrated book of anecdotes about his life – Surely You’re Joking Mr Feynman – the scientist recounts how he applied an experimental approach to chatting up women. Having assumed, like most men, that you had to start by offering to buy them a drink, he explains how a conversation with a master of ceremonies at a nightclub in Albuquerque one summer prompted him to change tactics. And to his surprise, an aloof persona proved far more successful than behaving like a gentleman.

His other method of relaxation in those years was music; his passion for playing the bongos stayed with him for the rest of his life. Physics had slipped down his list of priorities, but he suddenly rediscovered his love for the subject in a most unexpected way. In the canteen at Cornell one lunchtime he became distracted by a student, who had thrown a plate into the air. As it clattered onto the floor Feynman observed that the plate rotated faster than it wobbled. It made him wonder what the relationship was between these two motions.

Playing with the equations which described this movement reminded him of a similar problem concerning the rotational spin of the electron, described by the British physicist Paul Dirac. And this, in turn, led him to Dirac’s theory of Quantum Electrodynamics (QED); a theory which had tried to make sense of the subatomic world but had posed as many questions as it answered. What followed, Feynman recalled years later, was like a cork coming out of a bottle. “Everything just poured out,” he remembered.

“He really liked to work in the context of things that were supposed to be understood and just understand them better than anyone else,” says Sean Carroll, a theoretical physicist who sits today at Feynman’s old desk at Caltech, in Pasadena. “That was very characteristic of Feynman. It required this really amazing physical intuition – an insight into what was really going on.” Applying this deep insight, Feynman invented an entirely new branch of maths to work on QED, which involved drawing little pictures instead of writing equations.

Richard’s sister, Joan, recalls him working on the problem while staying with her one weekend. Her room-mate was still asleep in the room where Richard had been working. “He said to me, ‘Would you go in the room and get my papers, I wanna start working’,” she remembers. “So I went in the room and I looked for them, but there was no mathematics. It was just these silly little diagrams and I came out and said, ‘Richard, I can’t find your papers, it’s just these kind of silly diagrams’. And he said, ‘That is my work!’” Today Feynman’s diagrams are used across the world to model everything from the behaviour of subatomic particles to the motion of planets, the evolution of galaxies and the structure of the cosmos.

Applying them to QED, Feynman came up with a solution which would win him a share of the 1965 Nobel Prize for Physics. Almost half a century later QED remains our best explanation of everything in the universe except gravity. “It’s the most numerically precise physical theory ever invented,” says Carroll.

Discovering a law of nature and winning a Nobel Prize, for most people, would represent the pinnacle of a scientific career. But for Feynman these achievements were mere stepping stones to other interests. He took a sabbatical to travel across the Caltech campus to the biology department, where he worked on viruses. He also unravelled the social behaviour of ants and potential applications of nanotechnology. And he was active beyond the world of science, trading physics coaching for art lessons with renowned Californian artist Jirayr Zorthian. (While at Caltech he also began frequenting a local strip club, where he would quietly work out his thories on napkins; he found it the ideal place in which to clear his head.)

But it was his talent as a communicator of science that made him famous. In the early Sixties, Cornell invited him to give the Messenger Lectures – a series of public talks on physics. Watching them today, Feynman’s charisma and charm is as seductive as it was 50 years ago.

“He loved a big stage,” says Carroll. “He was a performer as well as a scientist. He could explain things in different ways than the professionals thought about them. He could break things down into their constituent pieces and speak a language that you already shared. He was an amazingly good teacher and students loved him unconditionally.”

Recognising this ability, in 1965 Caltech asked him to rewrite the undergraduate physics course. The resulting Feynman Lectures on Physics took him three years to create and the accompanying textbooks still represent the last word on the history of physics. The lectures themselves were brimming with inspiring “showbiz demonstrations” as his friend Richard Davies describes them. Most memorably, Feynman used to set up a heavy brass ball on a pendulum, send it swinging across the room, and then wait for it to swing back towards him. Students would gasp as it rushed towards his face, but Feynman would stand stock still, knowing it would stop just in front of his nose. Keen to capitalise on these talents for engaging an audience, Christopher Sykes made his film for Horizon. “He took enormous pleasure in exploring life and everything it had to offer,” remembers Sykes. “More than that, he took tremendous pleasure in telling you about it.”

In the late Seventies, Feynman discovered a tumour in his abdomen. “He came home and reported, ‘It’s the size of a football’,” remembers his son Carl. “I was like ‘Wow, so what does that mean?’ And he said, ‘Well, I went to the medical library and I figure there’s about a 30 per cent chance it will kill me’.” Feynman was trying to turn his predicament into something fascinating, but it was still not the kind of thing a son wanted to hear from his father.

A series of operations kept Feynman alive and well enough to work on one final important project. In 1986, he joined the commission set up to investigate the Challenger disaster. The space shuttle had exploded 73 seconds after launch, killing the entire crew of seven astronauts. Feynman fought bureaucratic intransigence and vested interests to uncover the cause of the accident: rubber O-ring seals in the shuttle’s solid rocket boosters that failed to work on the freezing morning of the launch. At a typically flamboyant press conference, Feynman demonstrated his findings by placing a piece of an O-ring in a glass of iced water. But the inquiry had left him exhausted. With failing kidneys and in a great deal of pain he decided not to go through surgery again and went into hospital for the last time in February 1988.

His friend Danny Hillis remembers walking with Feynman around this time: “I said, ‘I’m sad because I realise you’re about to die’. And he said, ‘That bugs me sometimes, too. But not as much as you’d think. Because you realise you’ve told a lot of stories and those are gonna stay around even after you’re gone.’” Twenty-five years after his death, thanks to the web, Feynman’s prophecy has more truth than he could ever have imagined.

IMPORTANT: the copyright of this article belongs to the original author(s) and/or publisher(s). Please contact the admin if you have questions regarding the copyright: Contact


Related Articles:
New pursuit of Schrödinger’s cat
Time Regained


Commenting is closed for this article.